dataspot

Dataspot Examples

This folder contains practical examples that demonstrate the filtering and analysis capabilities of Dataspot. Each file focuses on specific use cases with concise, easy-to-understand code.

Example Files

1. 01_basic_query_filtering.py

Basic Query Filtering

Shows how to filter data before analysis using queries:

Use cases: E-commerce analysis, user segmentation by region/type.

python 01_basic_query_filtering.py

2. 02_pattern_filtering_basic.py

Pattern Filtering

Demonstrates filtering patterns after analysis using metrics:

Use cases: Support ticket analysis, finding significant patterns.

python 02_pattern_filtering_basic.py

3. 03_text_pattern_filtering.py

Text Pattern Filtering

Shows text-based filtering capabilities:

Use cases: Web analytics, browser analysis, category filtering.

python 03_text_pattern_filtering.py

4. 04_advanced_filtering.py

Advanced Filtering

Complex scenarios combining multiple filter types:

Use cases: Sales analysis, enterprise segmentation, complex business queries.

python 04_advanced_filtering.py

5. 05_data_quality_and_edge_cases.py

Data Quality and Edge Cases

Handling problematic data and edge cases:

Use cases: Data cleaning, validation, real-world data issues.

python 05_data_quality_and_edge_cases.py

6. 06_real_world_scenarios.py

Real-World Scenarios

Complete business use cases:

Use cases: End-to-end business applications.

python 06_real_world_scenarios.py

7. 07_tree_visualization.py

Tree Visualization

Hierarchical data structures for dashboards:

Use cases: Interactive dashboards, hierarchical visualization, drill-down interfaces.

python 07_tree_visualization.py

8. 08_auto_discovery.py

Automatic Pattern Discovery

Intelligent pattern discovery without manual field selection:

Use cases: Exploratory data analysis, fraud detection, business intelligence.

python 08_auto_discovery.py

9. 09_temporal_comparison.py

Temporal Comparison

Compare patterns between time periods:

Use cases: Fraud monitoring, performance tracking, A/B testing.

python 09_temporal_comparison.py

10. 10_stats.py

Statistical Analysis

Advanced statistical methods and calculations:

Use cases: A/B testing, fraud detection confidence, statistical validation.

python 10_stats.py

Getting Started

Prerequisites

Install Dataspot:

pip install dataspot

Or for local development:

pip install -e .

Run Examples

# Navigate to examples folder
cd examples

# Run individual examples
python 01_basic_query_filtering.py
python 02_pattern_filtering_basic.py
# ... etc

# Or run all examples
for file in *.py; do
    echo "=== Running $file ==="
    python "$file"
    echo ""
done

Key API Patterns

All examples use the new structured API with Input/Options models:

from dataspot import Dataspot
from dataspot.models.finder import FindInput, FindOptions

# Basic usage
dataspot = Dataspot()
result = dataspot.find(
    FindInput(data=data, fields=fields, query=query),
    FindOptions(min_percentage=10.0, limit=5)
)

# Access results
patterns = result.patterns
for pattern in patterns:
    print(f"{pattern.path} - {pattern.count} records ({pattern.percentage:.1f}%)")

Available Methods

Filtering Options

Query Filters (pre-analysis)

Pattern Filters (post-analysis)

Use Cases by Industry

Finance

E-commerce

Support

Marketing

Tips

  1. Start simple - Begin with basic examples (01-03)
  2. Use your data - Replace example datasets with your own
  3. Combine techniques - Mix approaches from different examples
  4. Handle edge cases - Review example 05 for real-world data
  5. Get inspired - Check example 06 for business applications

Troubleshooting

Common Issues

Error: “ModuleNotFoundError: No module named ‘dataspot’”

pip install dataspot

Examples show no results

Slow performance

All examples are designed to be educational and easily modifiable for your specific use cases!